Показаны сообщения с ярлыком палиперидон. Показать все сообщения
Показаны сообщения с ярлыком палиперидон. Показать все сообщения

четверг, 6 июня 2013 г.

Не связанные с дофамином механизмы действия антипсихотиков

APs suppress induction of pro-inflammatory cytokines. It is well established that psychotic episodes of schizophrenia are associated with neuroinflammation and elevations of cytokines such as interleukin 1 (IL-1), IL-6, tumor necrosis factor (TNF-α), and interferon gamma (IFN-γ). These inflammatory biomarkers are released by microglia, which are rapidly activated by psychosis and mediate brain tissue damage during psychosis. APs’ rapid inhibitory action on pro-inflammatory cytokines obviously is neuroprotective.
APs suppress immune-inflammatory pathways. This occurs with atypical agents but not haloperidol and results in decreased IL-1β and IL-6 and transforming growth factor-β.
APs significantly decrease levels of neurotoxic tryptophan catabolites (TRYCATS) such as 3-OHK and QUIN, which mediate the immune-inflammatory effects on neuronal activity. APs also increase levels of neuroprotective TRYCATS such as kynurenic acid.
APs activate cholesterol-transport proteins such as apolipoprotein E (APOE).6 This implies that APs may improve low levels of APOE observed during psychosis and decrease myelination abnormalities and mitigate impairment of synaptic plasticity.
APs increase neurotrophic growth factors that plummet during psychosis, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor. This beneficial effect is seen with SGAs but not first-generation APs (FGAs) and is attributed to strong serotonin 5HT-2A receptor antagonism by SGAs.
SGAs but not FGAs significantly increase the number of newly divided cells in the subventricular zone by 200% to 300%. This enhancement of neurogenesis and increased production of progenitor cells that differentiate into neurons and glia may help regenerate brain tissue lost during psychotic episodes.
Various SGAs have neuroprotective effects:
Clozapine has neuroprotective effects against liposaccharide-induced neurodegeneration and reduces microglial activation by limiting production of reactive oxygen species (free radicals).
Aripiprazole inhibits glutamate-induced neurotoxicity and, in contrast to haloperidol, increases BDNF, glycogen synthase kinase (GSK)-β, and the anti-apoptotic protein Bcl-2.
Olanzapine increases BDNF, GSK-3β, and β-catenin, increases mitosis in neuronal cell culture, and protects against neuronal death in cell cultures that lack nutrients (which fluphenazine or risperidone do not).
Paliperidone demonstrates a higher antioxidant effect than any other SGA and clearly is better than haloperidol, olanzapine, or risperidone in preventing neuronal death when exposed to hydrogen peroxide.
Quetiapine, ziprasidone, and lurasidone have inhibitory effects on nitric oxide release. Quetiapine, but not ziprasidone, inhibits TNF-α.
Ziprasidone inhibits apoptosis and microglial activation and synthesis of nitric oxide and other free radicals.
Lurasidone increases BDNF expression in the prefrontal cortex of rodents.
 Beyond dopamine: The ‘other’ effects of antipsychotics

понедельник, 22 ноября 2010 г.

Сравнение атипичных антипсихотиков




For example, when switching from a tightly binding anticholinergic or antihistaminergic medication (eg, olanzapine, quetiapine, clozapine) to one with less anticholinergic or antihistaminergic affinity (eg, aripiprazole, risperidone, ziprasidone), often transient rebound anxiety, insomnia, agitation and restlessness can occur. In addition, when switching from a tighter D2 binding agent to a looser-binding agent (eg, from risperidone to clozapine or quetiapine) or, particularly, to a partial dopamine agonist (eg aripiprazole) dopamine rebound symptoms, such as often transient worsening of psychosis, mania or aggression/agitation, can occur. A pharmacokinetic dopamine rebound may also occur when switching from a short half-life antipsychotic to a longer half-life antipsychotic (Table 1).4

The abrupt switch has the greatest potential for rebound and withdrawal phenomena. Even the conventional cross-titration can lead to problems when the pre-switch antipsychotic has a shorter half life and/or blocks more tightly cholinergic, histaminergic or dopaminergic receptors than the post-switch antipsychotic. Rebound phenomena can be minimized by avoiding abrupt or fast switching when the pre- and post-switch receptor affinities and/or half-lives differ considerably. Instead, an overlapping or “plateau” switch should be used. This consists of decreasing the pre-switch antipsychotic slowly (eg, 25–50% every 5 half-lives) and only after the post-switch antipsychotic has reached steady state (ie, ≤5 half lives on target dose). Adding calming medications during the switch period, such as benzodiazepines, antihistamines or sleep aides, can also minimize rebound phenomena.

A number of non-antipsychotic augmentation strategies have also been tested in schizophrenia patients with insufficient response to antipsychotic monotherapy. Of these, lithium,16 carbamazepine,17 and beta blockers18 were not superior to placebo when added to an antipsychotic. Similarly, benzodiazepine19 and valproate augmentation20 also did not show long-term superiority compared to placebo, although both agents might speed up the initial response. Although two large-scale studies showed no superiority of lamotrigine augmentation of antipsychotics compared to placebo,21 a meta-analysis demonstrated significant superiority regarding global ratings of psychopathology, positive and negative symptom change, as well as study-defined response when outcomes of patients were combined in whom lamotrigine was added to clozapine.22 This, however, has not been verified in a prospective study.

ECT augmentation has also been shown to be superior, both for acute efficacy and in maintenance treatment, when added to antipsychotic monotherapy in patients who have failed antipsychotic monotherapy.23

One meta-analysis suggested that augmentation of antipsychotics with antidepressants may be more helpful than placebo for schizophrenia patients with predominantly negative symptoms.24 Larger, validating studies are needed, however, and specific effects on negative symptoms need to be distinguished from proven effects of antidepressants on depressive symptoms in schizophrenia patients.25

Practical Dosing Strategies in the Treatment of Schizophrenia: Part 2 - Switching and Combining Antipsychotics